REPORT ON INTERROGATION OF LT. FROWEIN
OF OKN/4 SKL III, ON HTS WORK ON THE
SECURTTY OA THE GERUCAN NAVAJ FOUR-WHEFFL ENIGMA.

This interrogation was carried out on 2lst June, 1945, a.t the OKIC Signals School, FlimSBURG.

Lt. (IMN)d.R. HANS-JOACHIL FRONEIV was attached to OKI/4 SKL II Por six nonths from July 1944, to investigate the security of the Enigna.

Ticom
14 Jüy, 1945

No. of pages 7 Copy NO"

DISTRTBURION:

British
1 Directox
2 D.D. 3
3 D.D. 4
4-9 D.D. (N.S.) (6)
$10 \mathrm{D}_{\mathrm{s}} \mathrm{D}_{0}$ (WW)
11 D.D. (A.S.)
12-13 A.D.(C.C.R.) (2)
14 Lt.Col. Leathem
ITCOM
15 Chaiman
16-17 SoA.C. (2)
18 Cdr. Bacon
19 Cdr. MacKenzie
20 Cdr. Tandy
21 It. Col. Johnson
22 Lt.Cdr. lianson
23 Maj. Seanan
24 Lt. Eachus
25 It. Vance
26 Capt. Cowan
27 Lt. Fehl
28-29 Ticon Piles(2)
U.S.

30-31 OP20-G(2) (via It. Pendergrass)
$32 \mathrm{G}-2($ via Lt.Col. Hilles)
33-34 S.S.A. (2) (via. Najor Seanan)
35 Director, S.I.D. ETOUSA(via It. Col. Johnson)

Subjects: It. FRONEIN 4 SKI III C.R.R. TRANOIT 4 SKH III

Present: Car. Dudley Smith, RoNo It. Car. Forstor, RoNoV.R. It.Cdr. Davenport, RoNs. N_{0}.

1. Oberregierungsat Thaton oxplaned tho reasons which iead up to Lt ,
 very heavy U-Boat losses in 1943 and eariy 2944 and an enquiry was ordered into the causes of this situation. It was suggested that these losses might be duc to cypher mossages to and from or concarning U-Boats being dequphored by the enery. It wes considered possible that an Enigna machinc complete with druas and P / L copies of German signals might have been captured :som a Uouloat. They were continually occupied with the consideration "Is the machine safe?". The operational authoritics could not understand why boats were being sunk in cortain positions.
2. An important consideration, hovever, was their knowledge of the allied D / F Code, fron which they realised the very great part which D / F played in British and United States opcrations, The oxiginal Eritish D/F Bearing Code had not been read but later tho lettex code which replaced it was broken casily.
3. It was decided that It. FROTEIN should bo detachod from 4 SKI III and lent to 4 SKI II for a period of six months, to carry out a comprehensive investigation into the security of the fourwheel Naval Enigna. He joined 4 SKL II in July 1944 and continued the work until January 1945. He startea with a staff of two officers and ten men, but they were grad. ually taken aray fram him for other duties; at tho end he only had two assistants left who were capable of doing other than "ctooge" work.
4. Since signals from U-Boats were often very short, it was decided that the research should be besed on having a known short crib of only 25 letters. They started from scratch, none of them had any knowledge or experience of breaking the Conmercial Enigma, nor of any other cypher machine. At first thoy worked on the problom with no Stecker and then gradually increased the diffioulties.
5. FRONEIN then proceeded to explain the details of the work; although the following aocount has been left in the first person, it does not rom present a literal translation of his statements; it was not possiblc to tako a full shorthand record of the conversation owing to the fact that most of it was based on rough diagrams made by him during the course of the explanation.
6. The basis of wy work was the knowledge which an unauthorised pom son afght be expected to have, that is the machino itself and all Thoels, and a crib. IV particular task was to discover whether the inner setting (wheel order) and stecker could be recovered from a arib ob 25 latters. I started with no knowledge of the Enigma machine, and If was able to shor that this was possible. It is howevor only feasible if the wheel in the right hand position has one turn-over only. If you have in the right hand position a wheel with more than one turn-over, the problen becomes very difficult.
7. I first investigated the wiring of an individual wheel. [He made the diagran $I(a)$, see end of report--fron which he built up later a rod
8. It is assuned that all 26 letters of the crib which are used are encyphered with only the right hand wheel moving, the other wheels remaining fixed. This assurption is necossary, since if the crib involves a turnover the offect is the sane as a right hand wheel having 2 turnovers. slthough theoretically soluble, the work involved in this case would be very heavy.
9. It is first necessary to do a single letter frequency count of the 52 letters, 26 of the crib, and 26 of the cypher text. The letter A is relatively cormon in this example. Look for one or more instances in which any particular pair of freqent letters occur as constatations. In the example $A \mathbb{N}$ pairing occurs, and \hat{A}, N ore taken as the letters to start fron. For these two, and all other letters in turn, an analysis is made, giving the position of each occurrence and the letter paired to it. [Sce diagram II(b)]
10. I can now start investigation of the steckcr. In establishing the stocker there are 26 possibilities for Ao For each of these 26 possibilities there are a further 24 possibilities for \mathbb{N}. It is necessary to carry out over 600 tests on this basis. First assume a steckered to A and N steckered to B. Assunc also that the first ietter of the crib is encyphered with the right hand wheel in position io
11. On pressing the letter is in position 1 (with unsieckered machine), the current enters the later whecls at point 5 . This is read from the rod square. The relevant colunns of the rod square are entered in the analysis of constatations (see diagran $I I(b)$, For every occurrence of is, record in a table (diagram II(c)) the point at which current enters the later wheels. Then for B, usine row N of the rod square since N is steckered to B, we get from constatation $B T$ at i the entry 17 under 7 . Similarly for \mathbb{N}.
12. Fron the in constatation we discover that there nust be a connection (through the remaining wheels and reflector) between 17 and 4, if $2 l l$ assumptions made up to now are correct. This connection, obtained at position 21, must continue to exist throughout the encypherment as the other wheels do not move. Then of course at every other point where we have 4 we can put 17.
13. In particular, in position 6 we have $N F$ pairing. As N is steckered to B, current enters middle wheel at 4 , and 4 is connected to 17 , which in colum 6 of the rod square (or fron diagram $I I(b)$) is opposite F. Therefore F self-steckered is a consequence of our hypotheses, We do not particularly look for self-stecker, because it hinders rather than assists.
14. Working on, we find that G is steckered to R, using column 12. At, point 12 we have $N R$ pairing. As N is steckered to B we get current entry 4; looking for 17 in the column we find it opposite G, giving G/R. We have thus produced 2 new stecker pairings.
15. Now use the table for F, to put further entries into the table of rod pairings. [He called this the reconstructed stecker table.] As F is self-steckered, the entries are to be taken from row F. In position 5 we get 12, and in 11 we get 20. It now turns out that in position 5 we have deduced 2 connected to 12, and in position 11,12 connected to 20. These are incompatible, and therefore one or more of the assumptions which we have made must be wrong. An incompatibility of this type may turn up at the beginning or late in the work, but usually early on.
16. We nust nov repeat the tests assuming a new wheel position. This of course takes 26 more doys or 26 more men. If we still get no answer, we must repeat for all the wheels, on the assumption that the original right hand wheel tried was wrong.
17. In the case of a wheel with 2 turnovers it is very difficult to build up the stecker completely. The table of rod pairings must be built up in two halves, because the connections will be different when the middle wheel has moved. The labour is heavy. If the wheel has only one turnover, we have a fotcion on? ins in wich thore will be fepeats betroon the rod pairings involved, sometimes 4 or 5 occurrendes of a pairing. on the basis of a stretch of 13 only it is unlikely that they will repeat more than once.
18. Suppose we have used all the material availeble in the 25 letter crib, without reaching a contradiction, then a further assurmtion must be made. Find what comon letters are unaccounted for in the stocker obtained, for example K. Now assume a new stecker for K, first K steckered to D. With this assumption the table either fills itself up easily, or a contradiction is imediately apparent. You cannot say that the initial assumptions are wrong until all remaining possibilities for K have been tried out and failed.
19. As far as letters not in the original crib or oypher text are concorncd, it is not necessary to extend the test to them since towards the end the process will be very "piecy" in any case. You can of course include in the stecker talle letters which ore not in either the crib or cypher text, if they are steckered to letters which arco
20. If this is done with erery wheel in the right hand position in turn, then the one which gives the right answer must bo the right hand wheel of the inner setting which we are attempting to recover. Connections through the remaining wheels are constant since they do not nove. We must now establish the order of the remaining wheels.
21. The whole problen mas tackled on the assurpion of a 4 -whecl enigma, although up to this point it does not of course matter how many wheels there are. If the wheel in the right hand position has more than 2 turnovers, the problem becomes impossible. The Naval Enigma wheuls had either 1 or 2 turnovers. There was talk of using up to 26 turnovers for the right hand wheel. All wheels would be adjustable, but only the right hand wheel would have more than the ordinary number of turnovers.
22. With the second wheel from the right the basic problen is the same. It can only be studied when it moves alonc, the other wheels remaining stationary. Perhaps 10 or 13 letters right be sufficient.
23. The number of theoretical electrical connections
is $25 \times 23 \times \ldots \times 3 \times 1=8 \times 10^{12}$ approx. The practical possibilities for rod pairings on the 4 wheel enigma is
$56 \times 2 \times 2 \times 26^{3}=4 \times 10^{6}$ approx.
(There are 2 possibilities for UKN, 2 for Zusatzwal.ze, and the left hand and middle wheels are 2 out of 8 wheels available) Thus the practical possibilities are a small fraction of the theoretical possibilitios.
24. Tho following stages in the process were not carried out in practice, but the theoretical calculations were done. In practice Hollerith machinery would bo used. For every one of the 4×10^{6} possibilities construct a Hollerith card, and sort by rod pairings, with all wheel orders together. When this catalogue has been nade, go back to the table giving
25. After 5 or 6 processes $4,000,000$ cards are probably reduced to 1 card. This will then give the wheel order, and the position of the wheels.
26. With a 3 -whoel Enigma the number of practical possibilities is only $56 \times 2 \times 26^{2}=70,000$, Thus only 70,000 instead of $4,000,000$ cards are required.
27. The problen set to me was to deternine whether the inner setting could be determined on a crib of 25 letters. By the above process I showed that it could, given certoin favourable circunstances.
28. No effort was made to try out the theory in practice on a threeWheel Enigma. Tho Hollerith catalogue once made is of course effective for the life of any one set of wheels. The enemy could have produced the 70,000 oavds at the beginning of the war and this catclogue would have been valid throughout the life of the three-wheel Enigma. The first Hollerith card sorting process would take 200 machine/hours, the second only 8 machine/hours, and so on.
29. The method was theoretically applicable with a crib of as few as 13 letters, but thousands of personnel would be necessary.
30. The official reaction to the findings of the investigation was the innediate decision that only wheels with two turnovers should be allored to be used in the right hand position. This was introduced at the beginning of December 1944。 It reduced the possible permutations of the whoel order, but increased the security of the machine against this particular weakness.
31. The view of the German Amy was thet their Enigna was theoretically soluble. The fourmizheel Enigma was not considered theoretically soluble and the Army were astonished at the Navy's view based on this investigation。"
32. TRANOW was asked whether any investigation into the security of the Enigma. machine had been made before July 1944. He replied that Fregatten Kapitan SINGER of 4 SKI II was responsible for current monitoring and surveillance of German traffic, but as he had already pointed out, these sort of people were no use -- the only effective action was to do what the enery may be expected to do, that is, a first class cryptanalytic attack.
33. The results of this work were not considered in their application to Typox. Before it could have been applied, it would have been necessary to have both the machine and the wheels, and even then the work would have assuned vast proportions.
34. FROWEIN finishod his researches by calculating a method recovering Wheel wirings, assuming wheels uncompromised by capture. This could be done with larger orib naterial, but no detailed investigation on this was made. Three or four oribs of 52 or 78 letters would be required. There was considered to be little point in pursuing this further as although the wheels were in enery hands, they could not be changed.
35. During the course of the interrogation it emerged that FROWEIN had been awarded the War Merit Cross for his research on the Enigma together with his other cryptographic work.

$$
I(a)
$$

$I(b)$

II(a)

$$
\operatorname{II}(\mathrm{B})
$$

Stacker $A / A, N / B$ giving $F / F, G / R$

